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Abstract~Gencral dynsmic team decision problems with Linear
information structures and guadratic payoff functions are studied.
The primitive random vatiahles ara jointly Gauszian, No congtraints
on the information struciures are imposed except causality.

Equivalence relations in informsation and in control functisns
among different systems are developed. These equivalence relations
aid in the solving of many genersl problems by relating their soly.
tions to thoss of the systems with “‘petfect memory.” The latter can
be obtained by the method detived in Part I A condition Is found
which enablce each decision maker to infer the information available
to his precedents, whila at the same time the controls which will
affect the information assessed can be proven optimal When this
condition fails, npper and lower bounds of the payoff function can
still ba ohtained systematically, and suboptimal controls can be ob-
tained,
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I. INTRODUCTION

IN Part T of this paper, Ho and Chu [1] have discussed
the informsation structures in s general organization and
their relation o team decision problems. It is found that
in & gencral causal system a partially ordercd precedence
relation { can be defined among all the members. This
precedence relstion then specifies the nature of the solu-
tion.

A linear-quadratic-Gaussian (1.QQ) team problem (@,
8, ¢, Hy Dylt,§ = 1, -+, N') iz an optimal decision prob-
lem with payoff funetion

J = Elg] = Efu"Qu + u™St + uel- (1)

where u” = (1,7, -+ -, un") and w, is the action variable of
team member 4; matrices Q, 8 and vector ¢ are fixed and
of appropriate dimensions, @ is symmetric positive defi-
nite; the random variable of the external world £ is « priori
Gaussian with distribution N(O, X). The information 2,



received by the th member iz o linear function 4, of £ and
u,
g0 = melf, u)

= Hyf + ;_Duuf- @
il
Finally, the actions of the team members are to be de-
termined a8 the control Jaws ¥,

3

where 7, & T'y, the set of all k~dimensional Borel-mesasur-
able functions of z,.

In Part Lit has been shown that for both static and dy-
namic LQG teams with partially nested information struc-
tures, the optima) decision +* is linear funetion of z,. Part
IT of this paper will extend the study to general dynamic
LQG tfeams in which the information structures aré not
necessarily partinlly nested. It has been shown (2] that in
genera] the optimal action of each member may riot be
fincar in the information. Generslly, each z,, and hence %,
will depend on 4l the control laws of his precedents ex-
plicitly; and this dependence is itsclf affected by the nature
of the past control lews which are part of the solution to
be decided.

In the following seetions dealing with nonnested informa-
tion structures, we shall bypass this dependence difficulty
by defining an auxilisry problem which will be more easily
solvable. By considering sowne equivalent eontrols, we shall
try o relate the solution of the original problem to that
of the auxliary problem. For any given team problem, g
systematic approach is adopted for either solving it or
giving natural upper and Jower bounds Lo its optimal pay-
off function,

uy = ()

11, EquivaLent ConNTROLS

We again index the members in sueh 2 way that if mem-
ber £ iz a precedent of member j, then 7 < 7.

In & given LQG team probiem &, for the sth member the
information function #, is & mapping from the Cartesian
production. of E and U, to set Z, such that

2o = ety wg1) 4)
where ‘
ZYEZQEEE&IIC!M;E U,fOl']'= 1, 2, "',1:* 1

(u], %y Tty u{—i)
U{-—l = {/; X Uz X X U-x—-x-

The control function «, is & mapping from set Z, to set U,
such that

Uy =

(®)

where 2, & Z, aud u, € U,. Then the tomposite function
1ae gives the recursive relation for u,, following the prece-
dence diagram as defined in Part I, such that

i=1 .-, N.

Us = vz

Ug = 71[’71(&: ui—l)] = yen(s, Uy ), (B)

Fig. 1.

In our problem X is the Euclidean space R", U, is the
Euclidean space B, Z, is the Euclidean space R%. The
control vy, is assumed to be chosen from T, which is the
set of all Borel-measursble functions from 7, to U,. Singe
on & & Gaussian probability distribution has been defined,
it is measurable. The information funetion 7, is Imown to
be linear; therefore, a measurable spsce U, will imply &
mensursble 2, and hence s measursble U7,

For any given set of control laws v, « - -, ¥x sud causal
information functions m, -+ -, 7y, We define a sct of com-
posile coritrol funelions p, from = to U7, such that

Pi(E) = na[m(®) )
P®) = Vil m®), - pa®)), i=2 - N ()
Naturally,

e = vi[odzd] = pi(E), (©)

Schematically, p, is a composite fumetion which direetly
maps points of Z space mto U, space. (See Fig. 1).

Definition: In g team with two sets of information-con-
trol design, (1) (m, -+, ux; 13, - -5 ya) and (2) (R, <+ -, vy
¥, ++ -y ¥n), the control laws (v, * -+, v~) and (Fs, -+ -, ¥w)
are said to be equivalent if p, = $, for all 4; where p, and
£, are the composite control functions of (1) and (2), re-
spectively,

With equivalent control laws, the same value of £ will
imply the same value of u, {or al} 4, and hence we have

Theorem 1. )
Theorem 1: The Problems @ and O with equivalent con-

trols have the same payofi.
Proof:
U = pE) = 5i(8) = #, - N
J = El9( un)] = E[g{& pn(®] = E[gG, du(D)]
= Blg(t )] = J. QED.
The relation of control equivalence iz decided by infor-

mation structure and control funetions independently of
the payoff function.

.o, V.

i=1,

=1

III. CONSTRUCTION OF TAE AUXTILIANY PROBLEM

To facilitate the sohriion of given team Problem @ with
information structure

£ = e, wm, -0, W) = Hé + %;Pﬂ‘u!: ¥i, (10)

we shall construct an auxiliary tesmm Problem & with infor-



']

Group I Group IT

Rig. 2.

mation strueture #, i, - - -, iy such that the following con-
ditions hold. -
Condstion 1: 5, is more informative thap n, for all 7 in the
sense that knowing 2 implies knowing 2; for all 4.
Condition 2: 71, 72, -+ -, 7w is partially nested.
The information functions 4 such that

uea) = (zlifierd ~ 5
satisly both Conditions 1 and 2.
ZLizample: Given is the Problem @ with
- Hg = Hat + Dy = Hy
= H4§ + Dpus + Dgun & = Hst + Dga.

The precedence diagram of this problem is as displayed in
Fig. 2. Member one i8 precedent to members two and four;
member two is precedent, to member four; member three
is the precedent of member five. The suxifiary Problem &,
which is partially nested and more informative for each
of the members, has

Z, = 'FH(EI Uy,

. —31 1 0
R N
| 22 2 Dy
21 H, 0 ’ 0
B=|laa|=|H:ff+|Dunus+1 0
’ 24 H4 _-D .Dqg
@ 3 0
oo~ [
25 H, Dy

In the suxiliary problem, the precedent’s, and only the
precedent’s, information is included as extra components
of the old information for each of the members. Thus, this
process of adding information results i s unique and more
1nformative Problem {.

Condition 1 gusrantees that the optimal payoff value of
Problem & is no worse than that of Problem @, or J* < J*,
becsuse any control law in Problem 8 is algo available in
Problem {.* Condition 2 tells us that 7,*, the optimal con-
trol of Problem &, are linear and are solvable by Theorem
2 of Part T of this paper. Thus, we can always get a lower
bound for the payoff for any given problem by this pro-
cedure. . |

Suppose we can find controls (y1, s, -+, vw) for Prob-
lem @ such that they arc cquivalent to the optimal linear

* In the more general many-person game problems when the pay-
off funetion of asch of the mgmbers may not be the same, & morg n}:-
formnuve information structure does not necessarily imply a better
. £fonanch nf the memhera,
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P (§) = Yyp (& py(E)a wun py_1 (€]} . «.Froblen f1

..o Prohlen B

" Fig. 8.

controls of Problem {; in other words, for all %, the p, func-
tion construeted is equal to the $,* for Problem $; the
payoff function for both problems will be the same as
aseerted in. Theorem 1. (See Fig. 3.) However, the payoff of
@ is bounded below by that of <, hence (yy, s, -, Ya)
chosen for £ must be optimal for it.

Now, the main problem we are concernrd with is; U'nder
what conditions cun we find 1y, s, - ~ for @ such that
the resulting p, will equal the known p, of §t for all 4.

Theorem £: Define §,* as the composite control corre-
gponding to the optimal control ¥,* of the auxiliary Prob-
lem @ for each #; and define functions

gi(B) = n, B*E), D), -+ -, But*(®), Vi (12)
Tf there exists some funetions r, from B% to % such that
Pt = rg, ¥ i (18)

then (ry, - -+, ry) i5 optimal for Problem € and they are
equivalent to (F;%, - -, ") of the auxiliary Problem $i.
Proof: Let v, = r; for all 2.

n(f) = ym() = rm@) = p*

on(E) = yvun(E Py <oy Pr-1) = TNﬁN('é; pry oy Bea™
= rvgn(®) = Bx*(§).
So, {r, - -+, ry) is equivalent to (1", - - -, v»%); and J by

(ry, *++, ry) is equal to J* of the auxiliary Problem Q. But
% it more informative than 4. for all ¢, and J* < J*, (1,
+ +, rx) must be optimal for Problem £2.
Corollary: If g, is invertible for all £, the optimal control
laws for Problem 2 can be found, and they are equivalent
to those of Problem {I.

Proof: Suffice to let -,
21() = vam(t) = [Br*mgud) = H*E
m(&) YomlE, palE)) = [Pz*gn"‘]gz(i) = p*(®)

= P for all 4.

pn(®) = raaw(E, 21(8), p2(8), - -y PN—:}(&))

= 'YN"’-N(EJ 51*(5): pz*(E): Tt fN—I*(E))
Batantan(®) = Br*(0).

Composite control function $,* partitions the spate 5
into equivalent classes such that for any & and & in E,
P*(E) = BME&) if and only if £ end £, belong to the same
clasa.

Theorem 2 provides o condition under the sssumed in-

PSRN TN

25



atzork dynamis equatiany
¢« intg J ond i'=

2 esRTiALLY NESTED

) INFORMATION STRUGTURE 2
inforrotion reduclion
tedundoacy dulnted

N

5 4)

OFTIMAL SCLUTION LINEAR CONSTRUCT AUXILIARY

. PROBLEM D

[
Dreb;;n' ic:n;::unt te . wire ntormativa, partisily aested
aatimality ueique; r, J (F¥2 1%
1
[] -
SOLVE PROBLEM {1
tinaoe .)7“7‘

1

)
CAN WZ FiND ¥ FOR §l SUCH
THAY ¥ 1S EBUIVALENT To 742

{or approaimotely)

) {8}

¥ IS OPTIMAL Por 5 FIND LINEAR SUBOPTIMAL
DECISION FQR 0

= 75

TR b

Fig. 4. General analysis flow chart.

formation structure when the members have enough knowl-
edge to distinguish differing #s up to the classes they be-
long to. Thus, Lo each £ they are sble to sasign specific »;
= 5.*(£) nccessary for a payofl J*.
The corollary is more special than Theorem 2 in the
senge that each member ig sble i0 distinguish eash indi-
*vidual £-element in the space & Lhrough function g,~’.

IV. ExampriEs

With the help of Theorem 2 and its eorollary, we can
sclve many team problems for their optimal controls and
payoff functions. The genera] analysis flow chart is as dis-
played in Fig, 4.

Block 1: Nurmalize Problem £ into the standard form
(1) and (2). Any proper discrete linear dynamic proecess
with poyloff function quadratic in state and controls and
with Gaussian @ prier random varinbles fits our model.

Block #2: Draw the information precedence diagram of
Problem @ according to (2). After reducing (2) to that of
row-reduced cchelon matriecs, check if it is partially
nested.

Block 3: 1f the answer to Block 2 i3 yes, Problem & is
static or is equivalent to a static one. The optimal control
funetions are linear and unique. (See Theorem 2 of Part T
of this paper.)

Block 4: If the answer to Block 2 is no, construet auxil-
iary Problem $ with partially nested and more informative
information structure.

Block &: Solve Problem {1, the optimal control #* of
which. ig linear,

v sasvvas  TUGLUES WE CAN.

find 7y, for Problem & such that (yy, « -, yy) is equivalent
to (M* -+, ¥8*). (8ee Theorem 2 of Purt I1.)

RBlock 7: 1f the answer to Block 6 is yes, {7y,
optimal for Problem @ and J* = J*

Block 8: If the answer to Block 6 is no, J* of Problem {
is a lower bound of J* of Problem 2. An upper bound of J*
can be obtained as J,*, the payoff of the linear suboptimal
controls of Problem 2. Generally in this case, y¥ is non-
linear snd not solvable by the existing methods.

We give some examples of this systematic design ap-
proach, .

T 'VIV) is

Problem A:
211 i
N=3 Q=121 §={1| ¢=0
1 1 2 1
Pr{®) = N@, X)
a=§ @m=t Z=f+u (14)

From (14) we shall keep in mind the fset that member
one is the precedent of member two; while both member
one and member two arc the precedents of member three.
Member one knows the value of §; member two knows only
what member one has done, not what member one has
known; member three knows only § + u, but does not
know exactly what the second member has done. This jn-
formation structure ig elearly not a partially nested one
according to our definition. Following the approach out-
lines in Fig. 4, we have the following steps. -

Step 1: Construet the suxiliary Problem 4 for which

the information structure is
‘ L h=g =t
. n] [t
w2 []
' 7 | F £
By = |z] = k723 (15)
z:_} __E + %

or equivalently
2 ~ & 5=t &=¢

after deleting the redundancy. (See Theorem 1 of Part I.)
The optimal solution of Problem 4 is

g

%h* 1
U= —Q8t = —H1E=-%a
iiy* 1 -2

or

Lt = -t &= -0l 0

#* = —i[1 0 O} (16)
From (16) we have
BME) = 5*®) = HO) = -1 (17)



and
2 1 1@ 1
J* = Bl diraran|1 2o 1 | a* |+ (B Farm%| 1
1 1 2}|#&% 1
2 1 1{]~%
- B 3¢(~1 -1 —%)[1 2 1|4
11 24 -1
1
+ p(~4 =1 =D 1
1
= —&X. (18)

Step 2: Substitute (17) into (14),
P =2 =¢
@®) =2 =5*¢) = -1
93(8) =z = &+ Bp*(d) =~ It (19)

All the funetions g, in (19) are invertible; thercfore, by
the corollary the optimal controls for Problem 4 &re

WM™ = n*z) = 51*5’1—1(31) = —1s
U™ = v z) = i’z* () = —%(—4)52 = 2
%t = ) = B i(n) = —3$)z = —¥z  (20)

end the optimal payoff funetion J* corresponds to (20)
is the same a5 7*, which is -- (3/8)X. Probiem A is a tesm
problem with result Jocated at Block 7 of Fig. 4.

In this example, since g. and ¢ are invertible, members
two and'three are able to infer from their own information
the informption available to their precedents; at the same
time, the precedents’ controls, which will affect the infor-
mation transmitted to the followers, are shown (o be opti-
mal. However, optimalily and the passing of information
bo the followers are not always compatible tasks. Theorem
2 and its coroliery give the conditions under which this
can be done,

Problem B:
2 1 1 3
N=3 @g=|121 8S=1{1 =10
112 1
Pr(®) ~ N, X)
=% @a=uwu 2=f+u (21)

Note that except for matrix 8, Problem B is exactly the
same 28 Problem 4. . :

Siep 1: Construct the auxiliary Problem B for which
the information structure is

Ll

JI

1

=2 E
: [zl] [ E ]
R = =
2 k251
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51 . £
Zzr=|Z:|= U (22)
23 F4 w
or, equivalently,
&f=F B =F &=t

after deleting the redundancy. (Theorem 1 of Part 1) The |
optimal salution of Problem B is

| #* 0 Q-5
= —Quist= —3f 1= | —3a,
Pig* 1 —is5

or
* = [-1 0]n

H* = 0-5

%G =[—3 0 0]z (23)
From (23) we have
PO =0 BO=-% &HO--L
and
2 1 1 ][&* 3
J*= B {*m*m*)| 1 2 1}l %" | + @erm)| L
1 1 2] &% 1
- 3oy N EES -0
1 24t —% 1
- 24)
Step 2: Substitute (23) into (21),
gl == =¢
0i(f) =z2 = #* = 0
() =z =t + @* =3 (25)

Since funclion g, in (25) is not an invertible one, the
second member cannot obtain the necessury information
sbout ¢ by just knowing the value of 2 which is zero.
‘Therefore, we cannot have » solution for the original prob-
lem such that the control functions are equivalent to those
from (23). However, we can have solutions which are as
close an approximation to (23) as possible. The process is
to chupge the control laws (23) alightly, such that the re-
sulting functions g, in (35) arc all invertible.

Let

T4 = ﬁu* = ['—‘ 0 0]53 (23’)

where D < ¢ <« 1 Thén; 51‘(5) = e, 5!0(8) = "';'5! ﬁao(g)
= —éfn and

g°) =2z = ¢
gfk) = 2 = 5" = &

WE =an=t+#=% (25"
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g+ funetions in (25') are invertible now, for Problem B we
then have :

uw’ = g z) = e

- 1/1 1
U = p'p’ N (z) = —5(;)‘1 = ~g %

— 1/3 1
' = Pyt z) = -5(5)23 = —53'8.- (26)
The payoff functivn of the contrals (26) is
B 21 1|fw . 3
S = B Hutusua)| 1 2 1 || w? |+ (uwud)| 1
i L1 2| wn i
B 21 1 €
= Bl 3 —3 |1 2 1|| -3
i 11 2J|-1
§
+ £ —3 -3 1
1
= [} + &)X 1Xase—0. (27

For Problem B, since —(1/3)X is the lower bound of the
payoff fusclion proved in (24), it is the best that can be
done. This J value of —(1/3)X can be approached as
closely as we wish, but is never attainable, if control law
(26) i3 used with e — 0 but = 0,

The invertibility of g,, of dimension at least n, allows
member ¢ to have sufficient information to distinguish
individual £ in Z. The approximation technique to solve
the problem from the auxibary problem can also be ex-
tended to some multidimensional eases by analogy. If geis
noninvertible with dimension n, we ean make it nonsingy-
lar by changing slightly the precedent’s control as in (23 .

Let us now consider some LQG team problems with the
result not loeated in either Block 3 or Block 7 of Fig. 4;
i.e., the result of this category of problems is Jocated in
Block 8 of ¥ig. 4. The general optimal solution of this case
is not now known however, upper and lower bounds for
J* can be obtained in & rather systematic way. Witsen-
heusen [2] hes mentioned & very interesting example
which just fits into this category. We shall restate his ex-
ample in our normalized standard form (1) and (2),
which is the following,.

Problem C:
1 1
14 = — —_——
N=2 g@-=|("Tx 7Y s-|7x°
—1 1 a 0

where X > 0 and

NCSR DEMOKRITOS LIBRARY

docs

27,

and

z = 1, 2 =0+ u.

(28)

Member one is member two's precedent; however, what
member two knows i& only a noisy information about what
merober one hag done, i.e., v + uy. Clearly, this is not a
partially nested structure. The auxiliary problem which
bounds Problem C in payoff from below is Problem ¢ with

5 =T
x
2z=
¥y

Hh==

_ o

Z
(See Theorem 1 of Purt 1.) The optimal solution of Problem
€ can be obtained as

(29)

or, equivalently,

Wr=th=8 ®B*=[ 0= 0]

J¥= -4 (30)
and _
P =~ 1 0} F(® =1 0k (31)
Substiluting (31) into (28), we get
a® =z =[ O}
plf) =z =0+ 5*E) = {1 1L (32)

1f there are control funetions v, for Problem € and they
are cquivalent to those 4,* for Problem C, then we require

n® = nln®] = w1 0t —
=50 =1 0k (33a)
when, 7 is the identity function and u, = z;;

pe(8) = 12lga(B)] = m[( 1] —
= %) = [1 0} (33b)

Howecver, (33b) is not possible since matrix [1 1}is not
nonsingular, nor ean it be made nonsingular by approxi-
mation if its dirocnsions are fixed. Therefore, we csnnot
have controls for Problem C that are equivalent to those
of Problem &, .-

Linear Suboptimal Conirols for Problem C: Let

wh=az+b=qar--b
w=dzp+ f=dv+dax+ db+ f

where @, b, d, and f are constants to be determined. The
psyoff funetion of the linear controls (34) is

34



= = ol 23 Ny 2y L%
Jz_2(1+x,)(a)i+b) datX — db* — bf

+ 2-'1)«121;z + d%’X + ff + 20 + d) — a,

To find the optimal a, b, d, and f, let 07 /i = O for i = a,
b, 2, and f. Then b = 0, f = 0, and

1

i ra—ax (35)
atX
T1¥ex @6)

In solving (35) and (36) together, there are three pairs of
real roots. They are the following,
Pair 1:

.1 R\ R 4
a_z(u\/l &) d_2(1+‘/1_})

1 1
1=z +o{x)

1 1
d—'*].—}‘i‘o(ﬁ)

. 1
o= = — 0 (local minimum).

2X
1 4
d=2(l—‘/1 =)
1

ag X — w, 1

Pair 2:

=i -

[ 1
a—+1+X+OF
28 X > o, 4;’[_...]__'_%4_0%)
J—h——l- 0 (local mini
: ox (local minimumy).
Pair &:
2 g2 . d
@ \/3Xsmh3 d=1 mmuha
wherc sinh ¢ = 3\;3){
f
o~ (7) + %)
23 X = =, d—rl—(‘%*_;_o(i’l-z)

Ji—= % (local maximum).

"These are the only three stationary points for the payoff
funelion (loeal minimum, Jocal maximum, -and saddie

Hutty) unuer w0e Nnear Cass ot controis, Hence, the lincar
suboptimal (global minimum) payoff is

J* = min (0, 0, 3) = 0, @7

Equations (30) and (37) setve as the lower and upper
bounds for J*, respectively, as X —+ «,

— = J*L ) L T =0,

X > w,

(38)

Many nonlinesr controls with payoff between these two
bounds can be casily designed. The best one is not known.

To find the linear suboptimal solution to & team problem
is an optimization problem in finite-dimensional Euclidesn
&pace only; while the optimal solution of the same problem
is a problem in measurable functional space. The former
can be handled by many of the well-known numerical
optimization techniques. '

V. CoNecrusion

General causal dynsmic team docision problems have
been considered through the control actions of members,
each one of which is responsible for a single action at a
single time moment. Communication links are developed
in a relution of partial ordering. All problems with a qua-
dratic payoff function, linesr dynamies, and Gaussian ¢
priori random variebles are examined in normalized form.
Because of the interaction of information, estimation, and
control functions, the quantities to bc estimated are no
longer Gausgian, and in general, the payoff function is not

convex for cach deeigion maker. Those standard resulis of

classical stochnstic optimal control do not generalize in an
obvious way.

Equivalence relation in conirol functions among dif-
ferent, systems is developed. This equivalence relation aids
in the solving of a class of difficult problems by relating
their solulivns to those of some auxiliaxy problems with
partially nested structure of “‘perfect memory.” The latter-
can be immediately obtained in an easier way. For each
member of the team a condition is found which enables
him to jnfer the information available to other persons in
the team. At the same time, the controls, which will affect
the information assessed, can be proven optimal. In other
problems when this condition fails to hold, upper and lower
bounds of the payofl funetion can still be found and sub-
optimal contrals can be obtained.
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